

CONFERENCE

Institut d'Imagerie Biomédicale Service Hospitalier Frédéric Joliot

23 février 2015 à 11 heures

Salle de conférence du Service Hospitalier Frédéric Joliot (SHFJ)

Mesure de pression non-invasive par IRM cardiovasculaire et modélisation unidimensionnel de l'aorte

Maya Khalife CEA – SHFJ

Laboratoire d'Imagerie Moléculaire In-Vivo UMR 1023 Inserm/CEA/Université Paris Sud - ERL 9218 CNRS

CONFERENCE

Institut d'Imagerie Biomédicale Service Hospitalier Frédéric Joliot

Résumé

L'imagerie par Résonance Magnétique permet de mesurer l'écoulement sanguin. Au niveau cardiovasculaire, elle permet d'acquérir non seulement des images anatomiques du cœur et des gros vaisseaux mais aussi des images fonctionnelles de vitesse voire d'accélération par contraste de phase. Cette technique offre des perspectives dans l'étude de la dynamique des fluides et dans la caractérisation des artères, en particulier pour les grosses artères systémiques comme l'aorte dont le rôle est primordial dans la circulation sanguine. Par ailleurs, l'un des paramètres qui entrent en jeu dans la détermination de la fonction cardiaque et du comportement vasculaire est la pression artérielle. La méthode de référence

de la mesure de pression dans l'aorte étant le cathétérisme, plusieurs méthodes combinant la modélisation à l'imagerie ont été proposées afin d'estimer un gradient de pression de façon non invasive. Ce travail de thèse propose de mesurer la pression dans un segment d'aorte grâce à un modèle 1D simplifié et en utilisant les données mesurées par IRM et un modèle 0D représentant le réseau vasculaire périphérique comme conditions aux limites. Aussi, afin d'adapter le modèle à l'aorte du patient, une loi de pression exprimant une relation entre la section aortique à la pression et basée sur la compliance a été utilisée. Cette dernière, liée à la vitesse d'onde de pouls (VOP), a été mesurée en IRM sur les ondes de vitesse.

Par ailleurs, les séquences de codage de vitesse et d'accélération sont longues et ponctuées d'artéfacts dus au mouvement du patient. Une apnée est requise afin de limiter le mouvement respiratoire. Cependant, la durée de l'apnée atteint 25 à 30 secondes pour de telles séquences, ce qui est souvent impossible à tenir pour les malades. Une technique d'optimisation de séquences dynamiques par réduction du champ de vue est proposée et étudiée. La technique décrit un dépliement des régions repliées par différence complexe de deux images, l'une codée et l'autre non codée en vitesse. Cette méthode réalise une réduction de plus de 25% de la durée d'apnée lorsqu'elle est appliquée en simulation. Un travail supplémentaire est requis pour son application in vivo.